例如:"lncRNA", "apoptosis", "WRKY"

Nuclear translocation of X-linked inhibitor of apoptosis (XIAP) determines cell fate after hypoxia ischemia in neonatal brain.

J. Neurochem.2008 Aug;106(3):1357-70. Epub 2008 May 13
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


The inhibitors of apoptosis (IAPs) are emerging as key proteins in the control of cell death. In this study, we evaluated the expression and subcellular distribution of the antiapoptotic protein X-linked IAP (XIAP), and its interactions with the XIAP-associated factor 1 (XAF1) in neonatal rat brain following hypoxia-ischemia (HI). HI triggered the mitochondrial release of cytochrome c, Smac/DIABLO, and caspase 3 activation. Confocal microscopy detected XIAP-specific immunofluorescence in the cytoplasm under normal condition, which exhibited a diffuse distribution at 6 h post-HI and by 12 h the majority of XIAP was redistributed into the nucleus. XIAP nuclear translocation was confirmed by subcellular fractionations and by expressing FLAG-tagged XIAP in primary cortical neurons. Over-expression of XIAP significantly reduced, whereas XIAP gene silencing further enhanced cell death, demonstrating a specific requirement of cytoplasmic XIAP for cell survival. An elevated level of cytosolic XIAP was also evident under the conditions of neuroprotection by fibroblast growth factor-1. XAF1 expression was increased temporally and there was increased nuclear co-localization with XIAP in hypoxic-ischemic cells. XIAP co-immunoprecipitated > 9-fold XAF1 protein concurrent with decreased association with caspases 9 and 3. This is evidenced by the enhanced caspase 3 activity and neuronal death. Our findings implicate XIAP nuclear translocation in neuronal death and point to a novel mechanism in the regulation of hypoxic-ischemic brain injury.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读