[No authors listed]
Structural and mechanistic studies on the crotonase superfamily (CS) are reviewed with the aim of illustrating how a conserved structural platform can enable catalysis of a very wide range of reactions. Many CS reactions have precedent in the 'carbonyl' chemistry of organic synthesis; they include alkene hydration/isomerization, aryl-halide dehalogenation, (de)carboxylation, CoA ester and peptide hydrolysis, fragmentation of beta-diketones and C-C bond formation, cleavage and oxidation. CS enzymes possess a canonical fold formed from repeated betabetaalpha units that assemble into two approximately perpendicular beta-sheets surrounded by alpha-helices. CS enzymes often, although not exclusively, oligomerize as trimers or dimers of trimers. Two conserved backbone NH groups in CS active sites form an oxyanion 'hole' that can stabilize enolate/oxyanion intermediates. The range and efficiency of known CS-catalyzed reactions coupled to their common structural platforms suggest that CS variants may have widespread utility in biocatalysis.
KEYWORDS: {{ getKeywords(articleDetailText.words) }}
Sample name | Organism | Experiment title | Sample type | Library instrument | Attributes | |||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
{{attr}} | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
{{ dataList.sampleTitle }} | {{ dataList.organism }} | {{ dataList.expermentTitle }} | {{ dataList.sampleType }} | {{ dataList.libraryInstrument }} | {{ showAttributeName(index,attr,dataList.attributes) }} |
{{ list.authorName }} {{ list.authorName }} |