例如:"lncRNA", "apoptosis", "WRKY"

Overexpression of Arabidopsis thaliana tryptophan synthase beta 1 (AtTSB1) in Arabidopsis and tomato confers tolerance to cadmium stress.

Plant Cell Environ.2008 Aug;31(8):1074-85. Epub 2008 Apr 17
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Tryptophan (Trp) is an essential amino acid in humans, and in plants, it plays a major role in the regulation of plant development and defence responses. However, little is known about Trp-mediated cadmium (Cd) tolerance. Gene expression analysis showed that Arabidopsis thaliana tryptophan synthase beta 1 (AtTSB1) is up-regulated in plants treated with Cd; hence, we investigated whether this gene is involved in Cd tolerance. Exogenous application of Trp to wild-type Arabidopsis enhances Cd tolerance. Cd tolerance in the Trp-overproducing mutant trp5-1 was associated with high chlorophyll levels and low lipid peroxidation, as indicated by malondialdehyde 4-hydroxyalkenal level, whereas the wild-type developed symptoms of severe chlorosis. Moreover, the Trp-auxotroph mutant trp2-1 was sensitive to Cd. CaMV 35S promoter-driven AtTSB1 enhanced Trp accumulation and improved Cd tolerance in transgenic Arabidopsis and tomato plants without increasing the level of Cd. Moreover, reverse transcription-polymerase chain reaction confirmed that enhanced level of Trp in AtTSB1 transgenic Arabidopsis plants affected the expression of AtZIP4 and AtZIP9 metal transporters, which interfered with Cd ion trafficking, a mechanism of transcriptional regulation that does not exist in wild-type plants. Overexpression of AtTSB1 in transgenic tomato also produced higher Trp synthase-beta enzyme activity than that in wild-type plants. These results implicate that Trp could be involved in Cd defence.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读