例如:"lncRNA", "apoptosis", "WRKY"

Dynamic analysis identifies novel roles for DLG-1 subdomains in AJM-1 recruitment and LET-413-dependent apical focusing.

J Cell Sci. 2008 May 01;121(Pt 9):1477-87. Epub 2008 Apr 14
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Cell-cell junctions are composed of a diverse array of specialized proteins that are necessary for the movement and integrity of epithelia. Scaffolding molecules, such as membrane-associated guanylate kinases (MAGUKs) contain multiple protein-protein interaction domains that integrate these proteins into macromolecular complexes at junctions. We have used structure-function experiments to dissect the role of domains of the Caenorhabditis elegans MAGUK DLG-1, a homolog of Drosophila Discs large and vertebrate SAP97. DLG-1 deletion constructs were analyzed in directed yeast two-hybrid tests as well as in vivo in a dlg-1 null mutant background. Our studies identify novel roles for several key domains. First, the L27 domain of DLG-1 mediates the physical interaction of DLG-1 with its binding partner, AJM-1, as well as DLG-1 multimerization. Second, the PDZ domains of DLG-1 mediate its association with the junction. Third, using dynamic in vivo imaging, we demonstrate that the SH3 domain is required for rapid lateral distribution of DLG-1 via a LET-413/Scribble-dependent pathway. Finally, we found that inclusion of the SH3 domain can ameliorate dlg-1 mutant phenotypes, but full rescue of lethality required the complete C terminus, which includes the GUK and Hook domains, thereby demonstrating the importance of the C-terminus for DLG-1 function. Our results represent the first in vivo analysis of requirements for the L27 domain of a Discs-large/SAP97 protein, identify a crucial LET-413/Scribble regulatory motif and provide insight into how MAGUK subdomains function to maintain epithelial integrity during development.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读