例如:"lncRNA", "apoptosis", "WRKY"

Bestrophin Cl- channels are highly permeable to HCO3-.

Am J Physiol Cell Physiol. 2008 Jun;294(6):C1371-7. doi:10.1152/ajpcell.00398.2007. Epub 2008 Apr 09
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Bestrophin-1 (Best1) is a Cl(-) channel that is linked to various retinopathies in both humans and dogs. Dysfunction of the Best1 Cl(-) channel has been proposed to cause retinopathy because of altered Cl(-) transport across the retinal pigment epithelium (RPE). In addition to Cl(-), many Cl(-) channels also transport HCO3(-). Because HCO3(-) is physiologically important in pH regulation and in fluid and ion transport across the RPE, we measured the permeability and conductance of bestrophins to HCO3(-) relative to Cl(-). Four human bestrophin homologs (hBest1, hBest2, hBest3, and hBest4) and mouse Best2 (mBest2) were expressed in HEK cells, and the relative HCO3(-) permeability (P HCO3/PCl) and conductance (G HCO3/GCl) were determined. P HCO3/PCl was calculated from the change in reversal potential (Erev) produced by replacing extracellular Cl(-) with HCO3(-). hBest1 was highly permeable to HCO3(-) (P HCO3)/PCl = approximately 0.44). hBest2, hBest4, and mBest2 had an even higher relative HCO3(-) permeability (P HCO3/PCl = 0.6-0.7). All four bestrophins had HCO3(-) conductances that were nearly the same as Cl(-) (G HCO3/GCl = 0.9-1.1). Extracellular Na+ did not affect the permeation of hBest1 to HCO3(-). At physiological HCO3(-) concentration, HCO3(-) was also highly conductive. The hBest1 disease-causing mutations Y85H, R92C, and W93C abolished both Cl(-) and HCO3(-) currents equally. The V78C mutation changed P HCO3/PCl and G HCO3/GCl of mBest2 channels. These results raise the possibility that disease-causing mutations in hBest1 produce disease by altering HCO3(-) homeostasis as well as Cl(-) transport in the retina.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读