例如:"lncRNA", "apoptosis", "WRKY"

Distribution of bovine and rabbit lens alpha-crystallin products by MALDI imaging mass spectrometry.

Mol Vis. 2008 Jan 29;14:171-9
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


PURPOSE:To develop a general tissue preparation protocol for MALDI (Matrix-Assisted Laser Desorption Ionization) imaging mass spectrometry of ocular lens tissue, and to compare the spatial distributions of alpha-crystallin and its modified forms in bovine and rabbit lenses. METHODS:Frozen bovine and rabbit lenses were cryosectioned equatorially at -20 degrees C into 12 microm-thick tissue sections. Lens sections were mounted onto conductive glass slides by ethanol soft-landing to maintain tissue integrity. An ethanol/xylene washing procedure was applied to each section before matrix application to facilitate uniform matrix crystal formation across the entire tissue section. Molecular images of both alpha-crystallin subunits and their modified forms were obtained from mass spectral data acquired at 100 microm steps across both whole rabbit and half bovine lens sections. RESULTS:Distinct spatial patterns for the two subunits of alpha-crystallin and their modified forms were observed in the rabbit and bovine lens sections. While alphaA-crystallin was extensively degraded in the lens core of both species, rabbit lenses exhibited a greater degree of larger molecular weight truncation products. In contrast, alphaB-crystallin degradation was limited in both species. Interestingly, phosphorylation of alphaA- and alphaB-crystallin was most abundant in the middle cortex of both species. CONCLUSIONS:An improved method for investigating the spatial distribution of alpha-crystallin in the ocular lens by MALDI imaging mass spectrometry has been developed. The localization of multiple degradation products and specific regions of alpha-crystallin phosphorylation in bovine and rabbit lenses gives new insight into the program of lens fiber cell differentiation and normal lens function.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读