[No authors listed]
A unique bacterial GTPase, Der, containing two tandem GTP-binding domains, is essential for cell growth and plays a crucial role in a large ribosomal subunit in Escherichia coli. The depletion of Der resulted in accumulation of both large and small ribosomal subunits and also affected the stability of large ribosomal subunits. However, its exact cellular function still remains elusive. Previously, we have shown that two G domain mutants, DerN118D and DerN321D, cannot support cell growth at low temperatures, suggesting that both GTP-binding domains are indispensable. In this study, we show that both Der variants are defective in ribosome biogenesis. Genetic screening of an E. coli genomic library was performed to identify the genes which, when expressed from a multicopy plasmid, can restore the growth defect of the DerN321D mutant at restrictive temperatures. Among seven suppressors isolated, four were located at 62.7 min on the E. coli genomic map, and the gene responsible for the suppression of DerN321D was identified as the relA gene which encodes a ribosome-associated (p)ppGpp synthetase. The synthetic activity of RelA was found to be essential for its DerN321D suppressor activity. Overexpression of RelA in a suppressor strain did not affect the expression of DerN321D but suppressed the polysome defects caused by the DerN321D mutant. This is the first demonstration of suppression of impaired function of Der by a functional enzyme. A possible mechanism of the suppression of DerN321D by RelA overproduction is discussed.
KEYWORDS: {{ getKeywords(articleDetailText.words) }}
Sample name | Organism | Experiment title | Sample type | Library instrument | Attributes | |||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
{{attr}} | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
{{ dataList.sampleTitle }} | {{ dataList.organism }} | {{ dataList.expermentTitle }} | {{ dataList.sampleType }} | {{ dataList.libraryInstrument }} | {{ showAttributeName(index,attr,dataList.attributes) }} |
{{ list.authorName }} {{ list.authorName }} |