例如:"lncRNA", "apoptosis", "WRKY"

Identification of novel mammalian caspases reveals an important role of gene loss in shaping the human caspase repertoire.

Mol. Biol. Evol.2008 May;25(5):831-41. Epub 2008 Feb 14
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Proteases of the caspase family play central roles in apoptosis and inflammation. Recently, we have described a new gene encoding caspase-15 that has been inactivated independently in different mammalian lineages. To determine the dynamics of gene duplication and loss in the entire caspase gene family, we performed a comprehensive evolutionary analysis of mammalian caspases. By comparative genomics and reverse transcriptase-polymerase chain reaction analyses, we identified 3 novel mammalian caspase genes, which we tentatively named caspases-16 through -18. Caspase-16, which is most similar in sequence to caspase-14, has been conserved in marsupials and placental mammals, including humans. Caspase-17, which is most similar to caspase-3, has been conserved among fish, frog, chicken, lizard, and the platypus but is absent from marsupials and placental mammals. Caspase-18, which is most similar to caspase-8, has been conserved among chicken, platypus, and opossum but is absent from placental mammals. These gene distribution patterns suggest that, in the evolutionary lineage leading to humans, caspase-17 was lost after the split of protherian and therian mammals and caspase-18 was lost after the split of marsupials and placental mammals. In the canine genome, the number of caspases has been reduced by the fusion of the neighboring genes caspases-1 and -4, resulting in a single coding region. Further lineage-specific gene inactivations were found for caspase-10 in murine rodents and caspase-12 in humans, rabbit, and cow. Lineage-specific gene duplications were found for caspases-1, -3, and -12 in opossum and caspase-4 in primates. Other caspases were generally conserved in all mammalian species investigated. Using the positions of introns as stable characters during recent vertebrate evolution, we define 3 phylogenetic clades of caspase genes: caspases-1/-2/-4/-5/-9/-12/-14/-15/-16 (clade I), caspases-3/-6/-7/-17 (clade II), and caspases-8/-10/-18/CFLAR (clade III). We conclude that gene inactivations have occurred in each of the 3 caspase clades and that gene loss has been as critical as gene duplication in the evolution of the human repertoire of caspases.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读