[No authors listed]
Accurate chromosome segregation in meiosis requires dynamic changes in chromatin organization. In Drosophila melanogaster, upon completion of recombination, meiotic chromosomes form a single, compact cluster called the karyosome in an enlarged oocyte nucleus. This clustering is also found in humans; however, the mechanisms underlying karyosome formation are not understood. In this study, we report that phosphorylation of barrier to autointegration factor (BAF) by the conserved kinase nucleosomal histone kinase-1 (NHK-1; Drosophila Vrk1) has a critical function in karyosome formation. We find that the noncatalytic domain of NHK-1 is crucial for its kinase activity toward BAF, a protein that acts as a linker between chromatin and the nuclear envelope. A reduction of NHK-1 or expression of nonphosphorylatable BAF results in ectopic association of chromosomes with the nuclear envelope in oocytes. We propose that BAF phosphorylation by NHK-1 disrupts anchorage of chromosomes to the nuclear envelope, allowing karyosome formation in oocytes. These data provide the first mechanistic insight into how the karyosome forms.
KEYWORDS: {{ getKeywords(articleDetailText.words) }}
Sample name | Organism | Experiment title | Sample type | Library instrument | Attributes | |||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
{{attr}} | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
{{ dataList.sampleTitle }} | {{ dataList.organism }} | {{ dataList.expermentTitle }} | {{ dataList.sampleType }} | {{ dataList.libraryInstrument }} | {{ showAttributeName(index,attr,dataList.attributes) }} |
{{ list.authorName }} {{ list.authorName }} |