例如:"lncRNA", "apoptosis", "WRKY"

Regulation of flowering time by the protein arginine methyltransferase AtPRMT10.

EMBO Rep. 2007 Dec;8(12):1190-5. Epub 2007 Nov 16
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


In plants, histone H3 lysine methyltransferases are important in gene silencing and developmental regulation; however, the roles of histone H4 methylation in plant development remain unclear. Recent studies found a type II histone arginine methyltransferase, AtPRTM5, which is involved in promoting growth and flowering. Here, we purified a dimerized plant-specific histone H4 methyltransferase, plant histone arginine methyltransferase 10 (PHRMT10), from cauliflower. Arabidopsis thaliana protein arginine methyltransferase 10 (AtPRMT10)--the Arabidopsis homologue of PHRMT10--was shown to be a type I PRMT, which preferentially asymmetrically methylated histone H4R3 in vitro. Genetic disruption of AtPRMT10 resulted in late flowering by upregulating FLOWERING LOCUS C (FLC) transcript levels. In addition, we show that AtPRMT10 functions genetically separate from AtPRMT5, but that each acts to fine-tune expression of FLC. This work adds an extra layer of complexity to flowering-time regulation and also sheds light on the importance of asymmetric arginine methylation in plant development.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读