[No authors listed]
In plants, histone H3 lysine methyltransferases are important in gene silencing and developmental regulation; however, the roles of histone H4 methylation in plant development remain unclear. Recent studies found a type II histone arginine methyltransferase, AtPRTM5, which is involved in promoting growth and flowering. Here, we purified a dimerized plant-specific histone H4 methyltransferase, plant histone arginine methyltransferase 10 (PHRMT10), from cauliflower. Arabidopsis thaliana protein arginine methyltransferase 10 (AtPRMT10)--the Arabidopsis homologue of PHRMT10--was shown to be a type I PRMT, which preferentially asymmetrically methylated histone H4R3 in vitro. Genetic disruption of AtPRMT10 resulted in late flowering by upregulating FLOWERING LOCUS C (FLC) transcript levels. In addition, we show that AtPRMT10 functions genetically separate from AtPRMT5, but that each acts to fine-tune expression of FLC. This work adds an extra layer of complexity to flowering-time regulation and also sheds light on the importance of asymmetric arginine methylation in plant development.
KEYWORDS: {{ getKeywords(articleDetailText.words) }}
Sample name | Organism | Experiment title | Sample type | Library instrument | Attributes | |||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
{{attr}} | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
{{ dataList.sampleTitle }} | {{ dataList.organism }} | {{ dataList.expermentTitle }} | {{ dataList.sampleType }} | {{ dataList.libraryInstrument }} | {{ showAttributeName(index,attr,dataList.attributes) }} |
{{ list.authorName }} {{ list.authorName }} |