例如:"lncRNA", "apoptosis", "WRKY"

Saccharomyces cerevisiae Rad16 mediates ultraviolet-dependent histone H3 acetylation required for efficient global genome nucleotide-excision repair.

EMBO Rep. 2008 Jan;9(1):97-102. Epub 2007 Nov 09
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


In yeast, global genome nucleotide-excision repair (GG-NER) requires a protein complex containing Rad7 and Rad16. Rad16 is a member of the switch/sucrose nonfermentable superfamily, and it is presumed that chromatin remodelling is its primary function during repair. We show that RAD16 is required for ultraviolet-dependent hyperacetylation of histone H3 (Lys 9 and Lys 14) at the MFA2 promoter and throughout the genome. The yeast repressor complex Ssn6-Tup1 represses many genes including MFA2. TUP1 deletion results in constitutive hyperacetylation of histone H3, nucleosome disruption and derepression of gene transcription in Tup1-regulated genes. GG-NER in the MFA2 promoter proceeds more rapidly in tup1Delta alpha-cells compared with wild type, even when transcription is inhibited. We show that elevated histone H3 acetylation levels in the MFA2 promoter in tup1Delta alpha-cells result in Rad7- and Rad16-independent GG-NER, and that Rad16 mediates the ultraviolet-induced acetylation of histone H3, necessary for efficient GG-NER.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读