例如:"lncRNA", "apoptosis", "WRKY"

Reduction of mint-1, mint-2, and APP overexpression in okadaic acid-treated neurons.

Neuroreport. 2007 Dec 03;18(18):1879-83
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Treatment of neurons with okadaic acid, a protein phosphatase-2A inhibitor, has been used to induce tau phosphorylation and neuronal death, and to create a research model of Alzheimer's disease. Amyloid precursor protein (APP) is the precursor protein of the beta-amyloid peptide that accumulates in extracellular plaques in Alzheimer's disease. Several studies have shown that mint-1 (munc18-interacting protein 1) and mint-2 bind to the YENPTY motif in the cytoplasmic domain of APP and inhibit processing of APP to beta-amyloid peptide. Here, we report that, upon neurodegeneration with okadaic acid, mint-1 and mint-2 levels were reduced by proteolytic cleavage, and that these changes were followed by increases in APP levels. We also show that the mint-1 and mint-2 cleavage and APP overexpression were prevented by calpain inhibitor-I and inhibitor-II. These results indicate that mint cleavage might play a role in the pathophysiology of Alzheimer's disease.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读