例如:"lncRNA", "apoptosis", "WRKY"

Identification of two novel chicken GHRH receptor splice variants: implications for the roles of aspartate 56 in the receptor activation and direct ligand receptor interaction.

J. Endocrinol.2007 Dec;195(3):525-36
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


In this study, two novel GHRHR receptor splice variants, named chicken GHRHR-v1 (cGHRHR-v1) and cGHRHR-v2 respectively, were identified from chicken pituitary using RT-PCR assay. cGHRHR-v1 is characterized by an N-terminal deletion of 36 amino acid residues, including an aspartate at position 56 (Asp(56)) conserved in G protein-coupled receptor B-I subfamily. cGHRHR-v2 is a carboxyl-terminal truncated receptor variant with four putative transmembrane domains, which arose from alternative use of a splice acceptor site on intron 8. Using the pGL3-CRE-luciferase reporter system, the functionality of the two variants was examined in Chinese hamster ovary cells. cGHRHR-v1 was shown to be capable of transmitting signal upon agonist stimulation, but cGHRHR-v2 could not. Both GHRH and pituitary adenylate cyclase-activating peptide (PACAP) could activate cGHRHR-v1 at high dosages (GHRH >/=10(-8) M; PACAP >/=10(-6) M) and GHRH was much more potent than PACAP, suggesting that cGHRHR-v1 is a functional membrane-spanning receptor with an impairment in high-affinity ligand binding, rather than in receptor activation and ligand-binding specificity. This finding also points out the possibility that Asp(56) is not a critical determinant for receptor activation and direct ligand-receptor interaction. To substantiate this hypothesis, using site-directed mutagenesis, two receptor mutants with replacement of Asp(56) by Ala or Gly were generated. Expectedly, chicken or human GHRH could still activate both receptor mutants with reduced potencies (about 2- to 14-fold less potent). Taken together, our findings not only suggest that cGHRHR variants may play a role in controlling normal pituitary functions, but also support that Asp(56) is nonessential for receptor activation and direct ligand-receptor interaction.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读