[No authors listed]
Duchenne muscular dystrophy (DMD) is one of the most severe X-linked, inherited diseases of childhood, characterized by progressive muscle wasting and weakness as the consequence of mutations in the dystrophin gene. The protein encoded by dystrophin is a huge cytosolic protein that links the intracellular F-actin filaments to the members of the dystrophin-glycoprotein-complex (DGC). Dystrophin deficiency results in the absence or reduction of complex components that are degraded through an unknown pathway. We show here that muscle degeneration in a Caenorhabditis elegans DMD model is efficiently reduced by downregulation of chn-1, encoding the homologue of the human E3/E4 ubiquitylation enzyme CHIP. A deletion mutant of chn-1 delays the cell death of body-wall muscle cells and improves the motility of animals carrying mutations in dystrophin and MyoD. Elimination of chn-1 function in the musculature, but not in the nervous system, is sufficient for this effect, and can be phenocopied by proteasome inhibitor treatment. This suggests a critical role of CHIP/CHN-1-mediated ubiquitylation in the control of muscle wasting and degeneration and identifies a potential new drug target for the treatment of this disease.
KEYWORDS: {{ getKeywords(articleDetailText.words) }}
Sample name | Organism | Experiment title | Sample type | Library instrument | Attributes | |||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
{{attr}} | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
{{ dataList.sampleTitle }} | {{ dataList.organism }} | {{ dataList.expermentTitle }} | {{ dataList.sampleType }} | {{ dataList.libraryInstrument }} | {{ showAttributeName(index,attr,dataList.attributes) }} |
{{ list.authorName }} {{ list.authorName }} |