例如:"lncRNA", "apoptosis", "WRKY"

Loss of ICAT gene function leads to arrest of ureteric bud branching and renal agenesis.

Biochem. Biophys. Res. Commun.2007 Nov 3;362(4):988-94. Epub 2007 Aug 27
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


ICAT, inhibitor of beta-catenin and T cell factor, or Ctnnbip1, is a negative regulator of the Wnt signaling pathway that interferes with the interaction between beta-catenin and T cell factor. Some ICAT-deficient (ICAT-/-) embryos exhibit unilateral or bilateral renal agenesis. In this study, we investigated developmental processes in the ICAT-/- kidney. ICAT was highly expressed in both the ureteric bud (UB) and the surrounding metanephric mesenchymal (MM) cells in the metanephros of embryonic day E11.5-E13.5 wild-type (ICAT+/+) mouse. In the E12.5-ICAT-/- metanephros, UB branching was delayed, and a T-shaped, bifurcated UB was frequently seen; this was never seen in the E12.5-ICAT+/+ metanephros. More apoptotic MM cells were detected in the ICAT-/- metanephros than in the ICAT+/+ metanephros. These results suggest that the loss of ICAT gene function causes the arrest of UB branching and the apoptotic death of MM cells, resulting in renal agenesis.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读