例如:"lncRNA", "apoptosis", "WRKY"

Retinoic acid inhibits beta-catenin through suppression of Cox-2: a role for truncated adenomatous polyposis coli.

J Biol Chem. 2007 Oct 05;282(40):29394-400. Epub 2007 Aug 02
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Mutations in adenomatous polyposis coli (APC) underlie the earliest stages of colorectal carcinogenesis. Consequences of APC mutation include stabilization of beta-catenin, dysregulation of cyclooxygenase-2 (COX-2) expression, and loss of retinoic acid production, events with poorly defined interactions. Here we showed that treatment of zebrafish expressing a truncated form of Apc with either retinoic acid or a selective COX-2 inhibitor decreased beta-catenin protein levels and downstream signaling events. Interestingly, the destruction of beta-catenin in apc mutant embryos following Cox-2 inhibition required the presence of truncated Apc. These findings support roles for retinoic acid and Cox-2 in regulating the stability of beta-catenin following Apc loss. Furthermore, truncated Apc appears to retain the ability to target beta-catenin for destruction, but only in the absence of Cox-2 activity. This novel function of truncated Apc may provide a molecular basis for the efficacy of COX-2 inhibitors in the treatment of colon cancer.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读