例如:"lncRNA", "apoptosis", "WRKY"

Continuous spectrophotometric assays for three regulatory enzymes of the arginine biosynthetic pathway.

Anal. Biochem.2007 Sep 15;368(2):138-47. Epub 2007 Jun 22
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


N-Acetylglutamate synthase (AGS), N-acetylglutamate kinase (AGK), and glutamate N-acetyltransferase (GAT) are the key enzymes in the synthesis of arginine that serves as an important precursor for the synthesis of protein, polyamines, urea, and nitric oxide. Current assays available for these three enzymes are laborious and time-consuming and do not allow continuous monitoring of enzyme activities. Here we established continuous enzyme assays for AGS, AGK, and GAT based on the coupling of AGS and GAT reactions to AGK followed by coupling of the AGK reaction to N-acetylglutamate 5-phosphate reductase (AGPR). The rate of AGPR-dependent oxidation of reduced nicotinamide adenine dinucleotide phosphate was monitored continuously as a change in absorbance at 340 nm using spectrophotometry. These methods were applied to kinetic analyses for Escherichia coli AGK, E. coli AGS, and Saccharomyces cerevisiae GAT, and the kinetic parameters obtained in the coupling assays showed nearly the same values as those obtained previously using discontinuous assays. The specificity of these coupled assays was confirmed by the lack of enzyme activity from extracts of E. coli AGS-, E. coli AGK-, and S. cerevisiae GAT-deletion mutants. Moreover, the coupled assay enabled us to measure AGS activity from mammalian liver mitochondrial extracts, known to be an important regulatory enzyme for the urea cycle. These coupled enzyme assays are rapid, highly sensitive, and reproducible.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读