例如:"lncRNA", "apoptosis", "WRKY"

Calcium-binding to lens betaB2- and betaA3-crystallins suggests that all beta-crystallins are calcium-binding proteins.

FEBS J.2007 Aug;274(16):4135-47. Epub 2007 Jul 25
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Crystallins are the major proteins of a mammalian eye lens. The topologically similar eye lens proteins, beta- and gamma-crystallins, are the prototype and founding members of the betagamma-crystallin superfamily. Betagamma-crystallins have until recently been regarded as structural proteins. However, the calcium-binding properties of a few members and the potential role of betagamma-crystallins in fertility are being investigated. Because the calcium-binding elements of other member proteins, such as spherulin 3a, are not present in betaB2-crystallin and other betagamma-crystallins from fish and mammalian genomes, it was argued that lens betagamma-crystallins should not bind calcium. In order to probe whether beta-crystallins can bind calcium, we selected one basic (betaB2) and one acidic (betaA3) beta-crystallin for calcium-binding studies. Using calcium-binding assays such as 45Ca overlay, terbium binding, Stains-All and isothermal titration calorimetry, we established that both betaB2- and betaA3-crystallin bind calcium with moderate affinity. There was no significant change in their conformation upon binding calcium as monitored by fluorescence and circular dichroism spectroscopy. However, 15N-1H heteronuclear single quantum correlation NMR spectroscopy revealed that amide environment of several residues underwent changes indicating calcium ligation. With the corroboration of calcium-binding to betaB2- and betaA3-crystallins, we suggest that all beta-crystallins bind calcium. Our results have important implications for understanding the calcium-related cataractogenesis and maintenance of ionic homeostasis in the lens.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读