例如:"lncRNA", "apoptosis", "WRKY"

Evolutionarily conserved WNK and Ste20 kinases are essential for acute volume recovery and survival after hypertonic shrinkage in Caenorhabditis elegans.

Am J Physiol Cell Physiol. 2007 Sep;293(3):C915-27. Epub 2007 Jun 27
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Members of the germinal center kinase (GCK)-VI subfamily of Ste20 kinases regulate a Caenorhabditis elegans ClC anion channel and vertebrate SLC12 cation-Cl(-) cotransporters. With no lysine (K) (WNK) protein kinases interact with and activate the mammalian GCK-VI kinases proline-alanine-rich Ste20-related kinase (PASK) and oxidative stress-responsive 1 (OSR1). We demonstrate here for the first time that GCK-VI kinases play an essential role in whole animal osmoregulation. RNA interference knockdown of the single C. elegans GCK-VI kinase, GCK-3, dramatically inhibits systemic volume recovery and survival after hypertonic shrinkage. Tissue-specific suggests that GCK-3 functions primarily in the hypodermis and intestine to mediate volume recovery. The single C. elegans WNK kinase, WNK-1, binds to GCK-3, and wnk-1 knockdown gives rise to a phenotype qualitatively similar to that of worms. Knockdown of the two kinases together has no additive effect, suggesting that WNK-1 and GCK-3 function in a common pathway. We postulate that WNK-1 functions upstream of GCK-3 in a manner similar to that postulated for its mammalian homologs. Phylogenetic analysis of kinase functional domains suggests that the interaction between GCK-VI and WNK kinases first occurred in an early metazoan and therefore likely coincided with the need of multicellular animals to tightly regulate transepithelial transport processes that mediate systemic osmotic homeostasis.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读