例如:"lncRNA", "apoptosis", "WRKY"

Identification of a vacuole-associated metalloreductase and its role in Ctr2-mediated intracellular copper mobilization.

J Biol Chem. 2007 Jul 27;282(30):21629-38. Epub 2007 Jun 06
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Copper is an essential trace metal whose biological utility is derived from its ability to cycle between oxidized Cu(II) and reduced Cu(I). Ctr1 is a high affinity plasma membrane copper permease, conserved from yeast to humans, that mediates the physiological uptake of Cu(I) from the extracellular environment. In the baker's yeast Saccharomyces cerevisiae, extracellular Cu(II) is reduced to Cu(I) via the action of the cell surface metalloreductase Fre1, similar to the human gp91(phox) subunit of the NADPH oxidase complex, which utilizes heme and flavins to catalyze electron transfer. The S. cerevisiae Ctr2 protein is structurally similar to Ctr1, localizes to the vacuole membrane, and mobilizes vacuolar copper stores to the cytosol via a mechanism that is not well understood. Here we show that Ctr2-1, a mutant form of Ctr2 that mislocalizes to the plasma membrane, requires the Fre1 plasma membrane metalloreductase for Cu(I) import. The conserved methionine residues that are essential for Ctr1 function at the plasma membrane are also essential for Ctr2-1-mediated Cu(I) uptake. We demonstrate that Fre6, a member of the yeast Fre1 metalloreductase protein family, resides on the vacuole membrane and functions in Ctr2-mediated vacuolar copper export, and cells lacking Fre6 phenocopy the Cu-deficient growth defect of ctr2Delta cells. Furthermore, both CTR2 and FRE6 mRNA levels are regulated by iron availability. Taken together these studies suggest that copper movement across intracellular membranes is mechanistically similar to that at the plasma membrane. This work provides a model for communication between the extracellular Cu(I) uptake and the intracellular Cu(I) mobilization machinery.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读