[No authors listed]
Protein degradation is an essential quality control and regulatory function in organisms ranging from bacteria to eukaryotes. In bacteria, this process is initiated by ATP-dependent proteases which digest proteins to short peptides that are subsequently hydrolyzed to smaller fragments and free amino acids. While the entire genome of Escherichia coli has been sequenced, identification of endopeptidases that perform this downstream hydrolysis remains incomplete. However, in eukaryotes, thimet oligopeptidases (TOP) has been shown to hydrolyze peptides generated by the degradation of proteins by the 26S proteasome. These findings motivated us to investigate whether E. coli oligopeptidase A (OpdA), a homolog of TOP might play a similar general role in bacterial protein degradation. Herein, we provide initial support for this hypothesis by demonstrating that OpdA efficiently cleaves the peptides generated by the activity of the three primary ATP-dependent proteases from E. coli-Lon, HslUV, and ClpAP.
KEYWORDS: {{ getKeywords(articleDetailText.words) }}
Sample name | Organism | Experiment title | Sample type | Library instrument | Attributes | |||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
{{attr}} | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
{{ dataList.sampleTitle }} | {{ dataList.organism }} | {{ dataList.expermentTitle }} | {{ dataList.sampleType }} | {{ dataList.libraryInstrument }} | {{ showAttributeName(index,attr,dataList.attributes) }} |
{{ list.authorName }} {{ list.authorName }} |