例如:"lncRNA", "apoptosis", "WRKY"

Material-based regulation of the myofibroblast phenotype.

Biomaterials. 2007 Aug;28(23):3378-87. Epub 2007 Apr 07
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Fibroblast growth factor receptor (FGFR) activation by basic fibroblast growth factor (FGF-2) serves to naturally repress the myofibroblast activation of valvular interstitial cells (VICs). Co-receptors for FGF-2, the heparan sulfate proteoglycans (HSPGs), are key participants in the formation of active FGF-2 signaling complexes. Bioactive environments regulating the myofibroblast phenotype were created by utilizing heparin glycosaminoglycan as a competitive inhibitor of HSPGs. First, soluble heparin was delivered to compete with cell-surface HSPG for the binding of FGF-2. Exogenous soluble heparin prevented serum-dependent activation of the classic mitogen-activated protein kinase (MAPK) and induced myofibroblast alpha smooth muscle actin (alphaSMA) expression and collagen production. Next, heparin-functionalized hydrogel cell substrates were polymerized from vinyl-modified precursors and rendered adhesive through incorporation of RGDS peptide. Culture of VICs on heparin-modified gels induced alphaSMA expression and inhibited MAPK activity compared to control gel substrates lacking heparin. Additionally, heparin-functionalized gels continued to induce alphaSMA expression in serum-free culture conditions, suggesting that bioactivity was independent of exogenous soluble mediators. Biomaterial scaffolds targeting cell surface growth factor receptors are a promising new direction for regulating cell functions in tissue-engineering applications.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读