例如:"lncRNA", "apoptosis", "WRKY"

The role of complex formation between the Escherichia coli hydrogenase accessory factors HypB and SlyD.

J Biol Chem. 2007 Jun 01;282(22):16177-86. Epub 2007 Apr 10
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


The Escherichia coli protein SlyD is a member of the FK-506-binding protein family of peptidylprolyl isomerases. In addition to its peptidylprolyl isomerase domain, SlyD is composed of a molecular chaperone domain and a C-terminal tail rich in potential metal-binding residues. SlyD interacts with the [NiFe]-hydrogenase accessory protein HypB and contributes to nickel insertion during biosynthesis of the hydrogenase metallocenter. This study examines the HypB-SlyD complex and its significance in hydrogenase activation. Protein variants were prepared to delineate the interface between HypB and SlyD. Complex formation requires the HypB linker region located between the high affinity N-terminal Ni(II) site and the GTPase domain of the protein. In the case of SlyD, the deletion of a short loop in the chaperone domain abrogates the interaction with HypB. Mutations in either protein that disrupt complex formation in vitro also result in deficient hydrogenase production in vivo, indicating that the contact between HypB and SlyD is important for hydrogenase maturation. Surprisingly, SlyD stimulates release of nickel from the high affinity Ni(II)-binding site of HypB, an activity that is also disrupted by mutations that affect complex formation. Furthermore, a SlyD truncation lacking the C-terminal metal-binding tail still interacts with HypB but is deficient in stimulating metal release and is not functional in vivo. These results suggest that SlyD could activate metal release from HypB during metallation of the [NiFe] hydrogenase.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读