例如:"lncRNA", "apoptosis", "WRKY"

Mice deficient in heparan sulfate 6-O-sulfotransferase-1 exhibit defective heparan sulfate biosynthesis, abnormal placentation, and late embryonic lethality.

J Biol Chem. 2007 May 25;282(21):15578-88. Epub 2007 Apr 03
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Heparan sulfate (HS) plays critical roles in a variety of developmental, physiological, and pathogenic processes due to its ability to interact in a structure-dependent manner with numerous growth factors that participate in cellular signaling. The divergent structures of HS glycosaminoglycans are the result of the coordinate actions of several N- and O-sulfotransferases, C5-epimerase, and 6-O-endosulfatases. We have shown that 6-O-sulfation of the glucosamine residues in HS are catalyzed by the sulfotransferases HS6ST-1, -2, and -3. To determine the biological and physiological importance of HS6ST-1, we now describe the creation of transgenic mice that lack this sulfotransferase. Most of our HS6ST-1-null mice died between embryonic day 15.5 and the perinatal stage, and those mice that survived were considerably smaller than their wild-type littermates. Some of these HS6ST-1-null mice exhibited development abnormalities, and histochemical and molecular analyses of these mice revealed an approximately 50% reduction in the number of fetal microvessels in the labyrinthine zone of the placenta relative to that in the wild-type mice. Because we observed a modest reduction in VEGF-A mRNA and protein in the tissues of HS6ST-1-null mice, an HS-dependent defect in cytokine signaling probably contributes to increased embryonic lethality and decreased growth. Biochemical studies of the HS chains isolated from various organs of our HS6ST-1-null mice revealed a marked reduction of GlcNAc(6SO(4)) and HexA-GlcNSO(3)(6SO(4)) levels and a reduced ability to bind Wnt2. Thus, despite the presence of three closely related 6-O-sulfotransferase genes in the mouse genome, HS6ST-1 is the primary one used in HS biosynthesis in most tissues.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读