例如:"lncRNA", "apoptosis", "WRKY"

Molecular characterization and expression profiles of cyclin B1, B2 and Cdc2 kinase during oogenesis and spermatogenesis in rainbow trout (Oncorhynchus mykiss).

Anim. Reprod. Sci.2008 May;105(3-4):209-25. Epub 2007 Mar 07
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


The meiotic maturation of oocyte and spermatocyte in animals is controlled by the maturation promotion factor (MPF), a complex of Cdc2 and cyclin B proteins. To better understand the mechanism of oocyte and spermatocyte maturation in fish, the expression of cyclin B1 (CB1), B2 (CB2) and Cdc2 kinase during oogenesis and spermatogenesis in rainbow trout were examined at both the mRNA and protein levels. Quantitative real-time PCR analysis showed that the amount of CB1 and CB2 mRNA was greater at previtellogenesis and late vitellogenesis stages, but less at early vitellogenesis stage and during early embryogenesis. Cdc2 mRNA was continuously present throughout the processes of oogenesis and early embryogenesis except for a decline at early vitellogenesis. In situ hybridization analysis indicated that CB1, CB2 and Cdc2 transcripts were present in oocytes of different developmental stages as well as in all spermatogenic cells except for spermatogonia. Immunohistochemical analysis revealed that CB1 protein was absent in vitellogenic oocytes, but present in young previtellogenic and mature oocytes. In contrast, CB2 and Cdc2 proteins were present at all stages oocyte development. Similarly, CB2 and Cdc2 proteins were present throughout spermatogenesis, whereas CB1 protein was only detected in spermatogonia and spermatocytes, but not in spermatids. Thus, it appears that CB1, CB2 and Cdc2 transcripts have similar expression patterns during oogenesis and spermatogenesis, but CB1 protein varies in amount during these processes. These data suggest that CB1 may have a leading role in the regulation of meiotic maturation of oocytes and spermotocytes.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读