例如:"lncRNA", "apoptosis", "WRKY"

Arabidopsis peroxisomal malate dehydrogenase functions in beta-oxidation but not in the glyoxylate cycle.

Plant J. 2007 May;50(3):381-90. Epub 2007 Mar 21
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


The aim was to determine the function of peroxisomal NAD(+)-malate dehydrogenase (PMDH) in fatty acid beta-oxidation and the glyoxylate cycle in Arabidopsis. Seeds in which both PMDH genes are disrupted by T-DNA insertions germinate, but seedling establishment is dependent on exogenous sugar. Mutant seedlings mobilize their triacylglycerol very slowly and growth is insensitive to 2,4-dichlorophenoxybutyric acid. Thus mutant seedlings are severely impaired in beta-oxidation, even though microarray analysis shows that beta-oxidation genes are expressed normally. The mutant phenotype was complemented by expression of a cDNA encoding PMDH with either its native peroxisome targeting signal-2 (PTS2) targeting sequence or a heterologous PTS1 sequence. In contrast to the block in beta-oxidation in mutant seedlings, [(14)C]acetate is readily metabolized into sugars and organic acids, thereby demonstrating normal activity of the glyoxylate cycle. We conclude that PMDH serves to reoxidize NADH produced from fatty acid beta-oxidation and does not participate directly in the glyoxylate cycle.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读