例如:"lncRNA", "apoptosis", "WRKY"

Phytotoxicity and phytoremediation of 2,6-dinitrotoluene using a model plant, Arabidopsis thaliana.

Chemosphere. 2007 Jun;68(6):1050-7. Epub 2007 Mar 26
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Biochemical and genetic studies of xenobiotic metabolism in the model plant Arabidopsis have significant potential in providing information for phytoremediation. This paper presents the toxicity of 2,6-dinitrotoluene (2,6-DNT) to Arabidopsis under axenic conditions, the fate and transformation of 2,6-DNT after uptake by the plant, and the effect of a putative glutathione S-transferase (GST), which is highly induced by 2,4,6-trinitrotoluene (TNT) in the previous study, on the detoxification of 2,6-DNT. 2,6-DNT had toxic effects on the growth of Arabidopsis based on whole seedling as well as root growth assays. Using [U- 14C]2,6-DNT, the recovery was over 87% and less than 2% accounted for the mineralization of 2,6-DNT in axenic liquid cultures during the 14d of exposure. About half (48.3%) of the intracellular radioactivity was located in the root tissues in non-sterile hydroponic cultures. 2-Amino-6-nitrotoluene (2A6NT) and two unknown metabolites were produced as transformation products of 2,6-DNT in the liquid media. The metabolites were further characterized by proton NMR spectra and the UV-chromatograms when the plant was fed with either 2,6-DNT or 2A6NT. In addition, polar unknown metabolites were detected at short retention times from radiochromatograms of plant tissue extracts. The GST gene of the wild-type of Arabidopsis in response to 2,6-DNT was induced by 4.7-fold. However, the uptake rates and the tolerance at different concentrations of 2,6-DNT and TNT were not significantly different between the wild-type and the gst mutant indicating that induction of the GST gene is not related to the detoxification of 2,6-DNT.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读