[No authors listed]
The basic helix-loop-helix (bHLH) eukaryotic transcription factors have the ability to form multiple dimer combinations. This property, together with limited DNA-binding specificity for the E box (CANNTG), makes them ideally suited for combinatorial control of gene expression. We tested the ability of all nine Saccharomyces cerevisiae bHLH proteins to regulate the enolase-encoding gene ENO1. ENO1 was known to be activated by the bHLH protein Sgc1p. Here we show that expression of an ENO1-lacZ reporter was also regulated by the other eight bHLH proteins, namely, Ino2p, Ino4p, Cbf1p, Rtg1p, Rtg3p, Pho4p, Hms1p, and Ygr290wp. ENO1-lacZ expression was also repressed by growth in inositol-choline-containing medium. Epistatic analysis and chromatin immunoprecipitation experiments showed that regulation by Sgc1p, Ino2p, Ino4p, and Cbf1p and repression by inositol-choline required three distal E boxes, E1, E2, and E3. The pattern of bHLH binding to the three E boxes and experiments with two dominant-negative mutant alleles of INO4 and INO2 support the model that bHLH dimer selection affects ENO1-lacZ expression. These results support the general model that bHLH proteins can coordinate different biological pathways via multiple mechanisms.
KEYWORDS: {{ getKeywords(articleDetailText.words) }}
Sample name | Organism | Experiment title | Sample type | Library instrument | Attributes | |||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
{{attr}} | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
{{ dataList.sampleTitle }} | {{ dataList.organism }} | {{ dataList.expermentTitle }} | {{ dataList.sampleType }} | {{ dataList.libraryInstrument }} | {{ showAttributeName(index,attr,dataList.attributes) }} |
{{ list.authorName }} {{ list.authorName }} |