例如:"lncRNA", "apoptosis", "WRKY"

Function, activity, and membrane targeting of cytosolic phospholipase A(2)zeta in mouse lung fibroblasts.

J Biol Chem. 2007 Apr 20;282(16):11676-86. Epub 2007 Feb 11
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Group IVA cytosolic phospholipase A(2) (cPLA(2)alpha) initiates eicosanoid production; however, this pathway is not completely ablated in cPLA(2)alpha(-/-) lung fibroblasts stimulated with A23187 or serum. cPLA(2)alpha(+/+) fibroblasts preferentially released arachidonic acid, but A23187-stimulated cPLA(2)alpha(-/-) fibroblasts nonspecifically released multiple fatty acids. Arachidonic acid release from cPLA(2) alpha(-/-) fibroblasts was inhibited by the cPLA(2)alpha inhibitors pyrrolidine-2 (IC(50), 0.03 microM) and Wyeth-1 (IC(50), 0.1 microM), implicating another C2 domain-containing group IV PLA(2). cPLA(2) alpha(-/-) fibroblasts contain cPLA(2)beta and cPLA(2)zeta but not cPLA(2)epsilon or cPLA(2)delta. Purified cPLA(2)zeta exhibited much higher lysophospholipase and PLA(2) activity than cPLA(2)beta and was potently inhibited by pyrrolidine-2 and Wyeth-1, which did not inhibit cPLA(2)beta. In contrast to cPLA(2)beta, cPLA(2)zeta expressed in Sf9 cells mediated A23187-induced arachidonic acid release, which was inhibited by pyrrolidine-2 and Wyeth-1. cPLA(2)zeta exhibits specific activity, inhibitor sensitivity, and low micromolar calcium dependence similar to cPLA(2)alpha and has been identified as the PLA(2) responsible for calcium-induced fatty acid release and prostaglandin E(2) production from cPLA(2) alpha(-/-) lung fibroblasts. In response to ionomycin, EGFP-cPLA(2)zeta translocated to ruffles and dynamic vesicular structures, whereas EGFP-cPLA(2)alpha translocated to the Golgi and endoplasmic reticulum, suggesting distinct mechanisms of regulation for the two enzymes.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读