例如:"lncRNA", "apoptosis", "WRKY"

The RNA-binding proteins PUF-5, PUF-6, and PUF-7 reveal multiple systems for maternal mRNA regulation during C. elegans oogenesis.

Dev. Biol.2007 Mar 15;303(2):635-49. Epub 2006 Dec 08
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


In metazoans, many mRNAs needed for embryogenesis are produced during oogenesis and must be tightly regulated during the complex events of oocyte development. In C. elegans, translation of the Notch receptor GLP-1 is repressed during oogenesis and is then activated specifically in anterior cells of the early embryo. The KH domain protein GLD-1 represses glp-1 translation during early stages of meiosis, but the factors that repress glp-1 during late oogenesis are not known. Here, we provide evidence that the PUF domain protein PUF-5 and two nearly identical PUF proteins PUF-6 and PUF-7 function during a specific period of oocyte differentiation to repress glp-1 and other maternal mRNAs. Depletion of PUF-5 and PUF-6/7 together caused defects in oocyte formation and early embryonic cell divisions. Loss of PUF-5 and PUF-6/7 also caused inappropriate expression of GLP-1 protein in oocytes, but GLP-1 remained repressed in meiotic germ cells. PUF-5 and PUF-6/7 function was required directly or indirectly for translational repression through elements of the glp-1 3' untranslated region. Oogenesis and embryonic defects could not be rescued by loss of GLP-1 activity, suggesting that PUF-5 and PUF-6/7 regulate other mRNAs in addition to glp-1. PUF-5 and PUF-6/7 depletion, however, did not perturb repression of the maternal factors GLD-1 and POS-1, suggesting that subsets of maternal gene products may be regulated by distinct pathways. Interestingly, PUF-5 protein was detected exclusively during mid to late oogenesis but became undetectable prior to completion of oocyte differentiation. These results reveal a previously unknown maternal mRNA control system that is specific to late stages of oogenesis and suggest new functions for PUF family proteins in post-mitotic differentiation. Multiple sets of RNA-binding complexes function in different domains of the C. elegans germ line to maintain silencing of Notch/glp-1 and other mRNAs.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读