例如:"lncRNA", "apoptosis", "WRKY"

Functional analysis of the aquaporin gene family in Caenorhabditis elegans.

Am J Physiol Cell Physiol. 2007 May;292(5):C1867-73. Epub 2007 Jan 17
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Aquaporin channels facilitate the transport of water, glycerol, and other small solutes across cell membranes. The physiological roles of many aquaporins remain unclear. To better understand aquaporin function, we characterized the aquaporin gene family in the nematode Caenorhabditis elegans. Eight canonical aquaporin-encoding genes (aqp) are present in the worm genome. Expression of aqp-2, aqp-3, aqp-4, aqp-6, or aqp-7 in Xenopus oocytes increased water permeability five- to sevenfold. Glycerol permeability was increased three to sevenfold by expression of aqp-1, aqp-3, or aqp-7. Green fluorescent protein transcriptional and translational reporters demonstrated that aqp genes are expressed in numerous C. elegans cell types, including the intestine, excretory cell, and hypodermis, which play important roles in whole animal osmoregulation. To define the role of C. elegans aquaporins in osmotic homeostasis, we isolated deletion alleles for four aqp genes, aqp-2, aqp-3, aqp-4, and aqp-8, which are expressed in osmoregulatory tissues and mediate water transport. Single, double, triple, and quadruple aqp mutant animals exhibited normal survival, development, growth, fertility, and movement under normal and hypertonic culture conditions. aqp-2;aqp-3;aqp-4;aqp-8 quadruple mutants exhibited a slight defect in recovery from hypotonic stress but survived hypotonic stress as well as wild-type animals. These results suggest that C. elegans aquaporins are not essential for whole animal osmoregulation and/or that deletion of aquaporin genes activates mechanisms that compensate for loss of water channel function.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读