[No authors listed]
The interaction of heterologous tissues involves cell adhesion mediated by the extracellular matrix and its receptor integrins. The Drosophila wing disc is an ectodermal invagination that contacts specific tracheal branches at the basolateral cell surface. We show that an alpha subunit of laminin, encoded by wing blister (wb), is essential for the establishment of the interaction between the wing and trachea. During embryogenesis, wing disc cells present Wb at their basolateral surface and extend posteriorly, expanding their association to more posteriorly located tracheal branches. These migratory processes are impaired in the absence of the trachea, Wb, or integrins. Time-lapse and transmission electron microscopy analyses suggest that Wb facilitates integrin-dependent contact over a large surface and controls the cellular behavior of the wing cells, including their exploratory filopodial activity. Our data identify Wb laminin as an extracellular matrix ligand that is essential for integrin-dependent cellular migration in Drosophila.
KEYWORDS: {{ getKeywords(articleDetailText.words) }}
Sample name | Organism | Experiment title | Sample type | Library instrument | Attributes | |||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
{{attr}} | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
{{ dataList.sampleTitle }} | {{ dataList.organism }} | {{ dataList.expermentTitle }} | {{ dataList.sampleType }} | {{ dataList.libraryInstrument }} | {{ showAttributeName(index,attr,dataList.attributes) }} |
{{ list.authorName }} {{ list.authorName }} |