例如:"lncRNA", "apoptosis", "WRKY"

The halothane gene, energy metabolism, adenosine monophosphate-activated protein kinase, and glycolysis in postmortem pig longissimus dorsi muscle.

J. Anim. Sci.2007 Apr;85(4):1054-61. Epub 2007 Jan 03
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


The presence of the halothane gene results in PSE meat. However, the exact mechanisms linking the halothane gene and the incidence of PSE meat remain unclear. We hypothesize that the presence of the halothane gene accelerates energy consumption in postmortem muscle, which activates adenosine monophosphate-activated protein kinase (AMPK), leading to enhanced glycolysis and PSE meat. To test our hypothesis, energy status, AMPK activity, and glycolysis in the postmortem LM of the halothane gene carrier and halothane-negative pigs were compared. The results showed that the presence of the halothane gene accelerated energy depletion in postmortem muscle immediately after exsanguination, leading to rapid and early depletion of ATP, as shown by an increase in the (adenosine monophosphate + inosine monophosphate):ATP ratio in postmortem LM. In addition, an early AMPK activation was observed in LM from halothane carriers. The fructose-2,6-diphosphate concentration in postmortem LM was well correlated with AMPK activation. To be a potent stimulator of phosphofructose kinase, the increase in fructose-2,6-diphosphate is expected to activate phosphofructose kinase, a key enzyme controlling glycolysis, leading to enhanced glycolysis and early accumulation of lactic acid. In summary, this study showed that the presence of the halothane gene induced early energy depletion, which could be a primary reason causing AMPK activation, leading to accelerated glycolysis and an increased incidence of PSE meat. However, AMPK might also be activated by other mechanisms besides energy depletion, which warrants further studies.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读