例如:"lncRNA", "apoptosis", "WRKY"

Dominant-negative alpha-subunit of farnesyl- and geranyltransferase inhibits glucose-stimulated, but not KCl-stimulated, insulin secretion in INS 832/13 cells.

Diabetes. 2007 Jan;56(1):204-10
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


The majority of small G-proteins undergo posttranslational modifications (e.g., isoprenylation) at their C-terminal cysteine residues. Such modifications increase their hydrophobicity, culminating in translocation of the modified proteins to their relevant membranous sites for interaction with their respective effectors. Previously, we reported glucose-dependent activation and membrane association of Rac1 in INS 832/13 cells. We also demonstrated modulatory roles for Rac1/GDP dissociation inhibitor in glucose-stimulated insulin secretion (GSIS) in INS 832/13 cells, further affirming roles for Rac1 in GSIS. Herein, we demonstrate that geranylgeranyltransferase inhibitor-2147 (GGTI-2147), an inhibitor of protein prenylation, markedly increased cytosolic accumulation of Rac1 and elicited significant inhibition of GSIS from INS 832/13 cells. In the current study, we also examined the localization of protein prenyltransferases (PPTases) and regulation of GSIS by PPTases in INS 832/13 cells. Western blot analyses indicated that the regulatory alpha-subunit and the structural beta-subunit of PPTase holoenzyme are predominantly cytosolic in their distribution. Overexpression of an inactive mutant of the regulatory alpha-subunit of PPTase markedly attenuated glucose- but not KCl-induced insulin secretion from INS 832/13 cells. Together, our findings provide the first evidence for the regulation of GSIS by PPTase in INS 832/13 cells. Furthermore, they support our original hypothesis that prenylation of specific G-proteins may be necessary for GSIS.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读