例如:"lncRNA", "apoptosis", "WRKY"

Plasmodium falciparum merozoite surface protein 3 is a target of allele-specific immunity and alleles are maintained by natural selection.

J. Infect. Dis.2007 Jan 15;195(2):279-87. Epub 2006 Dec 13
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


BACKGROUND:Plasmodium falciparum merozoite surface protein (MSP) 3 is an asexual blood-stage malaria vaccine candidate antigen. Sequence polymorphisms divide alleles into 2 major types, but the adaptive and immunological significance of the types has not been defined. METHODS:One hundred one msp3 allele sequences were sampled from 2 populations living in areas where malaria is endemic and were analyzed for evidence of natural selection. Recombinant antigens representing full-length sequences of different allelic types and a relatively conserved C-terminal region were produced, to evaluate immunization-induced antibody responses in mice and protective associations for naturally acquired antibodies in a cohort of 319 Gambian children under surveillance for malaria. RESULTS:Frequency-based statistical analyses indicated that polymorphisms are maintained by balancing selection in each of the 2 populations studied. Immunization of mice with full-length MSP3 antigens induced predominantly type-specific antibodies, and a large proportion of naturally acquired antibodies to MSP3 in humans also discriminated between the alleles. Among Gambian children, antibodies to allele-specific and conserved epitopes in MSP3 were associated prospectively with protection from clinical malaria, even after adjustment for age and for the presence of antibodies to other merozoite antigens. CONCLUSIONS:A vaccine incorporating both major allelic types of this promising candidate antigen could be particularly useful for induction of protective immunity in infants and young children.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读