例如:"lncRNA", "apoptosis", "WRKY"

Identification of PAD2 as a gamma-glutamylcysteine synthetase highlights the importance of glutathione in disease resistance of Arabidopsis.

Plant J.2007 Jan;49(1):159-72. Epub 2006 Nov 27
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


The Arabidopsis pad2-1 mutant belongs to a series of non-allelic camalexin-deficient mutants. It was originally described as showing enhanced susceptibility to virulent strains of Pseudomonas syringae and was later shown to be hyper-susceptible to the oomycete pathogen Phytophthora brassicae (formerly P. porri). Surprisingly, in both pathosystems, the disease susceptibility of pad2-1 was not caused by the camalexin deficiency, suggesting additional roles of in disease resistance. The susceptibility of pad2-1 to P. brassicae was used to map the mutation to the gene At4g23100, which encodes gamma-glutamylcysteine synthetase (gamma-ECS, GSH1). GSH1 catalyzes the first committed step of glutathione (GSH) biosynthesis. The pad2-1 mutation caused an S to N transition at amino acid position 298 close to the active center. The conclusion that duanyu15632 encodes GSH1 is supported by several lines of evidence: (i) pad2-1 mutants contained only about 22% of wild-type amounts of GSH, (ii) genetic complementation of pad2-1 with wild-type GSH1 cDNA restored GSH production, accumulation of camalexin in response to P. syringae and resistance to P. brassicae and P. syringae, (iii) another GSH1 mutant, cad2-1, showed pad2-like phenotypes, and (iv) feeding of GSH to excised leaves of pad2-1 restored camalexin production and resistance to P. brassicae. Inoculation of Col-0 with P. brassicae caused a coordinated increase in the transcript abundance of GSH1 and GSH2, the gene encoding the second enzyme in GSH biosynthesis, and resulted in enhanced foliar GSH accumulation. The pad2-1 mutant showed enhanced susceptibility to additional pathogens, suggesting an important general role of GSH in disease resistance of Arabidopsis.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读