例如:"lncRNA", "apoptosis", "WRKY"

Biophysical characterisation of the small ankyrin repeat protein myotrophin.

J. Mol. Biol.2007 Jan 26;365(4):1245-55. Epub 2006 Oct 21
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


The 118 residue protein myotrophin is composed of four ankyrin repeats that stack linearly to form an elongated, predominantly alpha-helical structure. The protein folds via a two-state mechanism at equilibrium. The free energy change of unfolding in water (DeltaG(U-N)(H(2)O)) is 5.8 kcal.mol(-1). The chevron plot reveals that the folding reaction has a broad energy barrier and that it conforms to a two-state mechanism. The rate of folding in water (k(f)(H(2)O)) of 95 s(-1) is several orders of magnitude slower than the value predicted by topological calculations. Proline mutants were used to show that the minor kinetic phases observed for myotrophin arise from heterogeneity of the ground states due to cis-trans isomerisation of prolyl as well as non-prolyl peptide bonds. Myotrophin is the first example of a naturally occurring ankyrin repeat protein that conforms to an apparent two-state mechanism at equilibrium and under kinetic conditions, making it highly suitable for high resolution protein folding studies.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读