例如:"lncRNA", "apoptosis", "WRKY"

Properties of the type B histone acetyltransferase Hat1: H4 tail interaction, site preference, and involvement in DNA repair.

J Biol Chem. 2007 Jan 12;282(2):836-42. Epub 2006 Oct 19
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


The Hat1 histone acetyltransferase catalyzes the acetylation of H4 at lysines 5 and 12, the same sites that are acetylated in newly synthesized histone H4. By performing histone acetyltransferase (HAT) assays on various synthetic H4 N-terminal peptides, we have examined the interactions between Hat1 and the H4 tail domain. It was found that acetylation requires the presence of positively charged amino acids at positions 8 and 16 of H4, positions that are normally occupied by lysine; however, lysine per se is not essential and can be replaced by arginine. In contrast, replacing Lys-8 and -16 of H4 with glutamines reduces acetylation to background levels. Similarly, phosphorylation of Ser-1 of the H4 tail depresses acetylation by both yeast Hat1p and the human HAT-B complex. These results strongly support the model proposed by Ramakrishnan and colleagues for the interaction between Hat1 and the H4 tail (Dutnall, R. N., Tafrov, S. T., Sternglanz, R., and Ramakrishnan, V. (1998) Cell 94, 427-438) and may have implications for the genetic analysis of histone acetylation. It was also found that Lys-12 of H4 is preferentially acetylated by human HAT-B, in further agreement with the proposed model of H4 tail binding. Finally, we have demonstrated that deletion of the hat1 gene from the fission yeast Schizosaccharomyces pombe causes increased sensitivity to the DNA-damaging agent methyl methanesulfonate in the absence of any additional mutations. This is in contrast to results obtained with a Saccharomyces cerevisiae hat1Delta strain, which must also carry mutations of the acetylatable lysines of H3 for heightened methyl methanesulfonate sensitivity to be observed. Thus, although the role of Hat1 in DNA damage repair is evolutionarily conserved, the ability of H3 acetylation to compensate for Hat1 deletion appears to be more variable.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读