例如:"lncRNA", "apoptosis", "WRKY"

Additive contribution of AMT1;1 and AMT1;3 to high-affinity ammonium uptake across the plasma membrane of nitrogen-deficient Arabidopsis roots.

Plant J.2006 Nov;48(4):522-34. Epub 2006 Oct 05
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


In Arabidopsis four root-expressed AMT genes encode functional ammonium transporters, which raises the question of their role in primary ammonium uptake. After pre-culturing under nitrogen-deficiency conditions, we quantified the influx of (15)N-labeled ammonium in T-DNA insertion lines and observed that the loss of either AMT1;1 or AMT1;3 led to a decrease in the high-affinity ammonium influx of approximately 30%. Under nitrogen-sufficient conditions the ammonium influx was lower in Columbia glabra compared with Wassilewskija (WS), and AMT1;1 did not contribute significantly to the ammonium influx in Col-gl. Ectopic expression of AMT1;3 under the control of a 35S promoter in either of the insertion lines amt1;3-1 or amt1;1-1 increased the ammonium influx above the level of their corresponding wild types. In transgenic lines carrying AMT-promoter-GFP constructs, the promoter activities of AMT1;1 and AMT1;3 were both upregulated under nitrogen-deficiency conditions and were localized to the rhizodermis, including root hairs. AMT gene-GFP fusions that were stably expressed under the control of their own promoters were localized to the plasma membrane. The double insertion line amt1;1-1amt1;3-1 showed a decreased sensitivity to the toxic ammonium analog methylammonium and a decrease in the ammonium influx of up to 70% relative to wild-type plants. These results suggest an additive contribution of AMT1;1 and AMT1;3 to the overall ammonium uptake capacity in Arabidopsis roots under nitrogen-deficiency conditions.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读