例如:"lncRNA", "apoptosis", "WRKY"

Monopolar attachment of sister kinetochores at meiosis I requires casein kinase 1.

Cell. 2006 Sep 22;126(6):1049-64
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


In meiosis, a single round of DNA replication is followed by two consecutive rounds of chromosome segregation, called meiosis I and II. Disjunction of maternal from paternal centromeres during meiosis I depends on the attachment of sister kinetochores to microtubules emanating from the same pole. In budding yeast, monopolar attachment requires recruitment to kinetochores of the monopolin complex. How monopolin promotes monopolar attachment was unclear, as its subunits are poorly conserved and lack similarities to proteins with known functions. We show here that the monopolin subunit Mam1 binds tightly to Hrr25, a highly conserved casein kinase 1 delta/epsilon (CK1delta/epsilon), and recruits it to meiosis I centromeres. Hrr25 kinase activity and Mam1 binding are both essential for monopolar attachment. Since CK1delta/epsilon activity is important for accurate chromosome segregation during meiosis I also in fission yeast, phosphorylation of kinetochore proteins by CK1delta/epsilon might be an evolutionary conserved process required for monopolar attachment.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读