例如:"lncRNA", "apoptosis", "WRKY"

Inactivation of the Escherichia coli K-12 twin-arginine translocation system promotes increased hydrogen production.

FEMS Microbiol. Lett.2006 Sep;262(2):135-7
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


The effect of deleting the genes encoding the twin-arginine translocation (Tat) system on H2 production by Escherichia coli strain MC4100 and its formate hydrogenlyase upregulated mutant (DeltahycA) was investigated. H2 evolution tests using two mutant strains defective in Tat transport (DeltatatC and DeltatatA-E) showed that the rate doubled from 0.88+/-0.28 mL H2 mg dry weight-1 L culture-1 in the parental strain, to 1.70+/-0.15 and 1.75+/-0.18 mL H2 mg dry weight-1 L culture-1, respectively, in the DeltatatC and DeltatatA-E strains. This increase was comparable to that of a previously characterized hydrogen over-producing E. coli strain carrying a DeltahycA allele. Construction of a tatC, DeltahycA double deletion strain did not increase hydrogen production further. Inactivation of the Tat system prevents correct assembly of the uptake hydrogenases and formate dehydrogenases in the cytoplasmic membrane and it is postulated that the subsequent loss of basal levels of respiratory-linked hydrogen and formate oxidation accounts for the observed increases in formate-dependent hydrogen evolution.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读