[No authors listed]
Previous examination of the accessibility of a panel of single-Cys mutants in transmembrane domain III (TMDIII) of the yeast mitochondrial citrate transport protein to the hydrophilic, cysteine-specific methanethiosulfonate reagent MTSES enabled identification of the water-accessible surface of this TMD. Further studies on the effect of citrate on MTS reagent accessibility, indicated eight sites within TMD III at which citrate conferred temperature-independent protection, thus providing strong evidence for participation of these residues in the formation of a portion of the substrate translocation pathway. Unexpectedly, citrate did not protect against inhibition of the Leu120Cys variant, despite its location on a water- and citrate-accessible surface of the TMDIII helix. This led to the hypothesis that in the 3-dimensional CTP structure, TMDIV packs against TMDIII in a manner such that the Leu120 side-chain folds behind the side-chain of Gln182. The present investigations addressed this hypothesis by examining the properties of the Gln182Cys single mutant and the Leu120Cys/Gln182Ala double mutant. We observed that in contrast to our findings with the Leu120Cys mutant, citrate did protect the Gln182Cys variant against MTSES-mediated inhibition. Importantly, truncation of the Gln182 side-chain to Ala enabled citrate to protect the Leu120Cys double mutant against inhibition. In combination these data support the idea that the Gln182 side-chain lines the transport path and sterically blocks access of citrate to the Leu120 side-chain. In a parallel series of investigations, we constructed 24 single-Cys substitution mutants that were chosen based on their hypothesized importance in substrate binding and/or translocation. We observed that substitution of Cys for residues E34, K37, K83, R87, Y148, D236, K239, T240, R276, and R279 resulted in > or =98% inactivation of CTP function, suggesting an essential structural and/or mechanistic role for these native residues. Superposition of this functional data onto a detailed 3-dimensional homology model of the CTP structure indicates that the side-chains of each of these residues project into the putative transport pathway. We hypothesize that a subset of these residues, in combination with four previously identified essential residues, define the citrate binding site(s) within the CTP.
KEYWORDS: {{ getKeywords(articleDetailText.words) }}
Sample name | Organism | Experiment title | Sample type | Library instrument | Attributes | |||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
{{attr}} | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
{{ dataList.sampleTitle }} | {{ dataList.organism }} | {{ dataList.expermentTitle }} | {{ dataList.sampleType }} | {{ dataList.libraryInstrument }} | {{ showAttributeName(index,attr,dataList.attributes) }} |
{{ list.authorName }} {{ list.authorName }} |