例如:"lncRNA", "apoptosis", "WRKY"

Directed evolution of an industrial biocatalyst: 2-deoxy-D-ribose 5-phosphate aldolase.

Biotechnol J. 2006 May;1(5):537-48. doi:10.1002/biot.200600020
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Aldolases are emerging as powerful and cost efficient tools for the industrial synthesis of chiral molecules. They catalyze enantioselective carbon-carbon bond formations, generating up to two chiral centers under mild reaction conditions. Despite their versatility, narrow substrate ranges and enzyme inactivation under synthesis conditions represented major obstacles for large-scale applications of aldolases. In this study we applied directed evolution to optimize Escherichia coli 2-deoxy-D-ribose 5-phosphate aldolase (DERA) as biocatalyst for the industrial synthesis of (3R,5S)-6-chloro-2,4,6-trideoxyhexapyranoside. This versatile chiral precursor for vastatin drugs like Lipitor (atorvastatin) is synthesized by DERA in a tandem-aldol reaction from chloroacetaldehyde and two acetaldehyde equivalents. However, E. coli DERA shows low affinity to chloroacetaldehyde and is rapidly inactivated at aldehyde concentrations useful for biocatalysis. Using high-throughput screenings for chloroacetaldehyde resistance and for higher productivity, several improved variants have been identified. By combination of the most beneficial mutations we obtained a tenfold improved variant compared to wild-type DERA with regard to (3R,5S)-6-chloro-2,4,6-trideoxyhexapyranoside synthesis, under industrially relevant conditions.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读