例如:"lncRNA", "apoptosis", "WRKY"

Molecular and enzymatic characterizations of novel bifunctional 3beta-hydroxysteroid dehydrogenases/C-4 decarboxylases from Arabidopsis thaliana.

J Biol Chem. 2006 Sep 15;281(37):27264-77. Epub 2006 Jul 11
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


We have isolated two cDNAs from Arabidopsis thaliana encoding bifunctional 3beta-hydroxysteroid dehydrogenase/C-4 decarboxylases (3betaHSD/D) involved in sterol synthesis, termed At3betaHSD/D1 and At3betaHSD/D2. Transformation of the yeast ergosterol auxotroph erg26 mutant, which lacks 3betaHSD/D activity, with the At3betaHSD/D1 isoform or with At3betaHSD/D2 isoform containing a C-terminal At3betaHSD/D1 endoplasmic reticulum-retrieval sequence restored growth and ergosterol synthesis in erg26. An in vitro enzymatic assay revealed high 3betaHSD/D activity for both isoenzymes in the corresponding microsomal extracts. The two At3betaHSD/D isoenzymes showed similar substrate specificities that required free 3beta-hydroxyl and C-4-carboxyl groups but were quite tolerant in terms of variations of the sterol nucleus and side chain structures. Data obtained with 4alpha-carboxy-cholest-7-en-3beta-ol and its 3alpha-deuterated analog revealed that 3alpha-hydrogen-carbon bond cleavage is not the rate-limiting step of the reaction. In planta reduction on the expression of the 3betaHSD/D gene as a consequence of VIGS-mediated gene silencing in Nicotiana benthamiana led to a substantial accumulation of 3beta-hydroxy-4beta,14-dimethyl-5alpha-ergosta-9beta,19-cyclo-24(24(1))-en-4alpha-carboxylic acid, consistent with a decrease in 3betaHSD/D activity. These two novel oxidative decarboxylases constitute the first molecularly and functionally characterized HSDs from a short chain dehydrogenase/reductase family in plants.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读