例如:"lncRNA", "apoptosis", "WRKY"

The IRAK-1-BCL10-MALT1-TRAF6-TAK1 cascade mediates signaling to NF-kappaB from Toll-like receptor 4.

J Biol Chem. 2006 Sep 08;281(36):26029-40. Epub 2006 Jul 10
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Our previous studies have revealed that the signaling protein BCL10 plays a major role in adaptive immunity by mediating NF-kappaB activation in the LPS/TLR4 pathway. In this study, we show that IRAK-1 acts as the essential upstream adaptor that recruits BCL10 to the TLR4 signaling complex and mediates signaling to NF-kappaB through the BCL10-MALT1-TRAF6-TAK1 cascade. Following dissociation from IRAK-1, BCL10 is translocated into the cytosol along with TRAF6 and TAK1, in a process bridged by a direct BCL10-Pellino2 interaction. RNA interference against MALT1 markedly reduced the level of NF-kappaB activation stimulated by lipopolysaccharide (LPS) in macrophages, which suggests that MALT1 plays a major role in the LPS/TLR4 pathway. MALT1 interacted with BCL10 and TRAF6 to facilitate TRAF6 self-ubiquitination in the cytosol, which was strictly dependent on the dissociation of BCL10 from IRAK-1. We show that BCL10 oligomerization is a prerequisite for BCL10 function in LPS signaling to NF-kappaB and that IRAK-1 dimerization is an important event in this process.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读