例如:"lncRNA", "apoptosis", "WRKY"

Silencing and overexpression of the gamma-subunit of Na-K-ATPase directly affect survival of IMCD3 cells in response to hypertonic stress.

Am. J. Physiol. Renal Physiol.2006 Dec;291(6):F1142-7. Epub 2006 Jun 27
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


The gamma-subunit of Na-K-ATPase is robustly expressed in inner medullary collecting duct (IMCD)3 cells either acutely challenged or adapted to hypertonicity but not under isotonic conditions. Circumstantial evidence suggests that this protein may be important for the survival of renal cells in a hypertonic environment. However, no direct proof for such a contention has been forthcoming. The complete mRNA sequences of either gamma-subunit isoforms were spliced into an expression vector and transfected into IMCD3 cells. Multiple clones stably expressed gamma-subunit protein under isotonic conditions. Clones expressing the gamma(b) isoform showed enhanced survival at lethal acute hypertonicity compared with either gamma(a) isoform or empty vector (control) expressing clones. We also evaluated the loss of gamma-subunit expression on the survival of IMCD3 cells exposed to hypertonicity employing silencing RNA techniques. Multiple stable gamma-subunit-specific siRNA clones were obtained and exposed to sublethal hypertonicity. Under these conditions, both the level of gamma mRNA and protein was essentially undetectable. The impact of silencing gamma-subunit expression resulted in a 70% reduction at 48 h (P < 0.01) in cell survival compared with empty vector (control) clones. gamma siRNA clones showed a 45% decrease in myo-inositol uptake compared with controls after an 18-h exposure to sublethal hypertonicity. Taken together, these data demonstrate a direct and critical role of the gamma-subunit on IMCD3 cell survival and/or adaptation in response to ionic hypertonic stress.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读