例如:"lncRNA", "apoptosis", "WRKY"

The C2H2 zinc-finger protein SYD-9 is a putative posttranscriptional regulator for synaptic transmission.

Proc. Natl. Acad. Sci. U.S.A.2006 Jul 05;103(27):10450-10455. Epub 2006 Jun 27
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Communication between neurons is largely achieved through chemical synapses, where neurotransmitters are released from synaptic vesicles at presynaptic terminals to activate postsynaptic cells. Exo- and endocytosis are coordinated to replenish the synaptic vesicle pool for sustained neuronal activity. We identified syd-9 (syd, synapse defective), a gene that encodes multiple C2H2 zinc-finger domain-containing proteins specifically required for synaptic function in Caenorhabditis elegans. syd-9 loss-of-function mutants exhibit locomotory defects, a diffuse distribution of synaptic proteins, and decreased synaptic transmission with unaffected neurodevelopment. syd-9 mutants share phenotypic and ultrastructural characteristics with mutants that lack synaptic proteins that are required for endocytosis. syd-9 mutants also display genetic interactions with these endocytotic mutants, suggesting that SYD-9 regulates endocytosis. SYD-9 proteins are enriched in the nuclei of both neuron and muscle cells, but their neuronal expression plays a major role in locomotion. SYD-9 isoforms display a speckle-like expression pattern that is typical of RNA-binding proteins that regulate premRNA splicing. Furthermore, syd-9 functions in parallel with unc-75 (unc, uncoordinated), the C. elegans homologue of the CELF/BrunoL family protein that regulates mRNA alternative splicing and processing, and is also required specifically for synaptic transmission. We propose that neuronal SYD-9 proteins are previously uncharacterized and specific posttranscriptional regulators of synaptic vesicle endocytosis.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读