例如:"lncRNA", "apoptosis", "WRKY"

Characterization of flavonoid 7-O-glucosyltransferase from Arabidopsis thaliana.

Biosci. Biotechnol. Biochem.2006 Jun;70(6):1471-7
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Most flavonoids found in plants exist as glycosides, and glycosylation status has a wide range of effects on flavonoid solubility, stability, and bioavailability. Glycosylation of flavonoids is mediated by Family 1 glycosyltransferases (UGTs), which use UDP-sugars, such as UDP-glucose, as the glycosyl donor. AtGT-2, a UGT from Arabidopsis thaliana, was cloned and expressed in Escherichia coli as a gluthatione S-transferase fusion protein. Several compounds, including flavonoids, were tested as potential substrates. HPLC analysis of the reaction products indicated that AtGT-2 transfers a glucose molecule into several different kinds of flavonoids, eriodictyol being the most effective substrate, followed by luteolin, kaempferol, and quercetin. Based on comparison of HPLC retention times with authentic flavonoid 7-O-glucosides and nuclear magnetic resonance spectroscopy, the glycosylation position in the reacted flavonoids was determined to be the C-7 hydroxyl group. These results indicate that AtGT-2 encodes a flavonoid 7-O-glucosyltransferase.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读