例如:"lncRNA", "apoptosis", "WRKY"

CYP71B15 (PAD3) catalyzes the final step in camalexin biosynthesis.

Plant Physiol.2006 Aug;141(4):1248-54. Epub 2006 Jun 09
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Camalexin represents the main phytoalexin in Arabidopsis (Arabidopsis thaliana). The camalexin-deficient phytoalexin deficient 3 (pad3) mutant has been widely used to assess the biological role of camalexin, although the exact substrate of the cytochrome P450 enzyme 71B15 encoded by remained elusive. 2-(Indol-3-yl)-4,5-dihydro-1,3-thiazole-4-carboxylic acid (dihydrocamalexic acid) was identified as likely intermediate in camalexin biosynthesis downstream of indole-3-acetaldoxime, as it accumulated in leaves of silver nitrate-induced pad3 mutant plants and it complemented the camalexin-deficient phenotype of a cyp79b2/cyp79b3 double-knockout mutant. Recombinant CYP71B15 heterologously expressed in yeast catalyzed the conversion of dihydrocamalexic acid to camalexin with preference of the (S)-enantiomer. Arabidopsis microsomes isolated from leaves of CYP71B15-overexpressing and induced wild-type plants were capable of the same reaction but not microsomes from induced leaves of pad3 mutants. In conclusion, CYP71B15 catalyzes the final step in camalexin biosynthesis.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读