例如:"lncRNA", "apoptosis", "WRKY"

Cloning, expression, and characterization of a methionyl aminopeptidase from a hyperthermophilic archaeon Thermococcus sp. NA1.

Mar. Biotechnol.2006 Jul-Aug ;8(4):425-32. doi:10.1007/s10126-005-6124-8. Epub 2006 Jun 12
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Genomic analysis of a hyperthermophilic archaeon Thermococcus sp. NA1 revealed the presence of an 885-bp open reading frame encoding a protein of 295 amino acids with a calculated molecular mass of 32,981 Da. Analysis of the deduced amino acid sequence showed that amino acid residues important for catalytic activity and the metal binding ligands conserved in all of methionyl aminopeptidases (MetAP) were also conserved and belonged to type IIa MetAP. The protein, designated TNA1_MetAP (Thermococcus sp. NA1 MetAP), was cloned and expressed in Escherichia coli. The recombinant enzyme was a Mn(2+)-, Ni(2+)-, Fe(2+)-, or Co(2+)-dependent metallopeptidase. Optimal MetAP activity against L: -methionine p-nitroanilide (Met-pNA) (K (m) = 0.68 mM) occurred at pH 7.0 and 80 to 90 degrees C. The MetAP was very unstable compared to Pyrococcus furiosus MetAP, which was completely inactivated by heating at 80 degrees C for 5 min. It seemed likely that the cysteine residue (Cys53) played a critical role in regulating the thermostability of TNA1_MetAP.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读